Bayesian inference for the distribution of grams of marijuana in a joint.
نویسندگان
چکیده
BACKGROUND The average amount of marijuana in a joint is unknown, yet this figure is a critical quantity for creating credible measures of marijuana consumption. It is essential for projecting tax revenues post-legalization, estimating the size of illicit marijuana markets, and learning about how much marijuana users are consuming in order to understand health and behavioral consequences. METHODS Arrestee Drug Abuse Monitoring data collected between 2000 and 2010 contain relevant information on 10,628 marijuana transactions, joints and loose marijuana purchases, including the city in which the purchase occurred and the price paid for the marijuana. Using the Brown-Silverman drug pricing model to link marijuana price and weight, we are able to infer the distribution of grams of marijuana in a joint and provide a Bayesian posterior distribution for the mean weight of marijuana in a joint. RESULTS We estimate that the mean weight of marijuana in a joint is 0.32g (95% Bayesian posterior interval: 0.30-0.35). CONCLUSIONS Our estimate of the mean weight of marijuana in a joint is lower than figures commonly used to make estimates of marijuana consumption. These estimates can be incorporated into drug policy discussions to produce better understanding about illicit marijuana markets, the size of potential legalized marijuana markets, and health and behavior outcomes.
منابع مشابه
A One-Stage Two-Machine Replacement Strategy Based on the Bayesian Inference Method
In this research, we consider an application of the Bayesian Inferences in machine replacement problem. The application is concerned with the time to replace two machines producing a specific product; each machine doing a special operation on the product when there are manufacturing defects because of failures. A common practice for this kind of problem is to fit a single distribution to the co...
متن کاملBayesian Estimation of Parameters in the Exponentiated Gumbel Distribution
Abstract: The Exponentiated Gumbel (EG) distribution has been proposed to capture some aspects of the data that the Gumbel distribution fails to specify. In this paper, we estimate the EG's parameters in the Bayesian framework. We consider a 2-level hierarchical structure for prior distribution. As the posterior distributions do not admit a closed form, we do an approximated inference by using ...
متن کاملClassical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملCost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors
Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug and alcohol dependence
دوره 165 شماره
صفحات -
تاریخ انتشار 2016